chi is a lightweight, idiomatic and composable router for building Go 1.7+ HTTP services. It's especially good at helping you write large REST API services that are kept maintainable as your project grows and changes. chi is built on the new context package introduced in Go 1.7 to handle signaling, cancelation and request-scoped values across a handler chain.

The focus of the project has been to seek out an elegant and comfortable design for writing REST API servers, written during the development of the Pressly API service that powers our public API service, which in turn powers all of our client-side applications.

The key considerations of chi's design are: project structure, maintainability, standard http handlers (stdlib-only), developer productivity, and deconstructing a large system into many small parts. The core router is quite small (less than 1000 LOC), but we've also included some useful/optional subpackages: middleware, render and docgen. We hope you enjoy it too!


go get -u


  • Lightweight - cloc'd in ~1000 LOC for the chi router
  • Fast - yes, see benchmarks
  • 100% compatible with net/http - use any http or middleware pkg in the ecosystem that is also compatible with net/http
  • Designed for modular/composable APIs - middlewares, inline middlewares, route groups and subrouter mounting
  • Context control - built on new context package, providing value chaining, cancelations and timeouts
  • Robust - in production at Pressly, CloudFlare, Heroku, 99Designs, and many others (see discussion)
  • Doc generation - docgen auto-generates routing documentation from your source to JSON or Markdown
  • No external dependencies - plain ol' Go 1.7+ stdlib + net/http


  • rest - REST APIs made easy, productive and maintainable
  • logging - Easy structured logging for any backend
  • limits - Timeouts and Throttling
  • todos-resource - Struct routers/handlers, an example of another code layout style
  • versions - Demo of chi/render subpkg
  • fileserver - Easily serve static files
  • graceful - Graceful context signaling and server shutdown

As easy as:

package main

import (

func main() {
	r := chi.NewRouter()
	r.Get("/", func(w http.ResponseWriter, r *http.Request) {
	http.ListenAndServe(":3000", r)

REST Preview:

Here is a little preview of how routing looks like with chi. Also take a look at the generated routing docs
in JSON (routes.json) and in
Markdown (

I highly recommend reading the source of the examples listed above, they will show you all the features
of chi and serve as a good form of documentation.

import (

func main() {
  r := chi.NewRouter()

  // A good base middleware stack

  // Set a timeout value on the request context (ctx), that will signal
  // through ctx.Done() that the request has timed out and further
  // processing should be stopped.
  r.Use(middleware.Timeout(60 * time.Second))

  r.Get("/", func(w http.ResponseWriter, r *http.Request) {

  // RESTy routes for "articles" resource
  r.Route("/articles", func(r chi.Router) {
    r.With(paginate).Get("/", listArticles)                           // GET /articles
    r.With(paginate).Get("/{month}-{day}-{year}", listArticlesByDate) // GET /articles/01-16-2017

    r.Post("/", createArticle)                                        // POST /articles
    r.Get("/search", searchArticles)                                  // GET /articles/search

    // Regexp url parameters:
    r.Get("/{articleSlug:[a-z-]+}", getArticleBySlug)                // GET /articles/home-is-toronto

    // Subrouters:
    r.Route("/{articleID}", func(r chi.Router) {
      r.Get("/", getArticle)                                          // GET /articles/123
      r.Put("/", updateArticle)                                       // PUT /articles/123
      r.Delete("/", deleteArticle)                                    // DELETE /articles/123

  // Mount the admin sub-router
  r.Mount("/admin", adminRouter())

  http.ListenAndServe(":3333", r)

func ArticleCtx(next http.Handler) http.Handler {
  return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
    articleID := chi.URLParam(r, "articleID")
    article, err := dbGetArticle(articleID)
    if err != nil {
      http.Error(w, http.StatusText(404), 404)
    ctx := context.WithValue(r.Context(), "article", article)
    next.ServeHTTP(w, r.WithContext(ctx))

func getArticle(w http.ResponseWriter, r *http.Request) {
  ctx := r.Context()
  article, ok := ctx.Value("article").(*Article)
  if !ok {
    http.Error(w, http.StatusText(422), 422)
  w.Write([]byte(fmt.Sprintf("title:%s", article.Title)))

// A completely separate router for administrator routes
func adminRouter() http.Handler {
  r := chi.NewRouter()
  r.Get("/", adminIndex)
  r.Get("/accounts", adminListAccounts)
  return r

func AdminOnly(next http.Handler) http.Handler {
  return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
    ctx := r.Context()
    perm, ok := ctx.Value("acl.permission").(YourPermissionType)
    if !ok || !perm.IsAdmin() {
      http.Error(w, http.StatusText(403), 403)
    next.ServeHTTP(w, r)

Router design

chi's router is based on a kind of Patricia Radix trie.
The router is fully compatible with net/http.

Built on top of the tree is the Router interface:

// Router consisting of the core routing methods used by chi's Mux,
// using only the standard net/http.
type Router interface {

	// Use appends one of more middlewares onto the Router stack.
	Use(middlewares ...func(http.Handler) http.Handler)

	// With adds inline middlewares for an endpoint handler.
	With(middlewares ...func(http.Handler) http.Handler) Router

	// Group adds a new inline-Router along the current routing
	// path, with a fresh middleware stack for the inline-Router.
	Group(fn func(r Router)) Router

	// Route mounts a sub-Router along a `pattern`` string.
	Route(pattern string, fn func(r Router)) Router

	// Mount attaches another http.Handler along ./pattern/*
	Mount(pattern string, h http.Handler)

	// Handle and HandleFunc adds routes for `pattern` that matches
	// all HTTP methods.
	Handle(pattern string, h http.Handler)
	HandleFunc(pattern string, h http.HandlerFunc)

	// Method and MethodFunc adds routes for `pattern` that matches
	// the `method` HTTP method.
	Method(method, pattern string, h http.Handler)
	MethodFunc(method, pattern string, h http.HandlerFunc)

	// HTTP-method routing along `pattern`
	Connect(pattern string, h http.HandlerFunc)
	Delete(pattern string, h http.HandlerFunc)
	Get(pattern string, h http.HandlerFunc)
	Head(pattern string, h http.HandlerFunc)
	Options(pattern string, h http.HandlerFunc)
	Patch(pattern string, h http.HandlerFunc)
	Post(pattern string, h http.HandlerFunc)
	Put(pattern string, h http.HandlerFunc)
	Trace(pattern string, h http.HandlerFunc)

	// NotFound defines a handler to respond whenever a route could
	// not be found.
	NotFound(h http.HandlerFunc)

	// MethodNotAllowed defines a handler to respond whenever a method is
	// not allowed.
	MethodNotAllowed(h http.HandlerFunc)

// Routes interface adds two methods for router traversal, which is also
// used by the package to generate documentation for Routers.
type Routes interface {
	// Routes returns the routing tree in an easily traversable structure.
	Routes() []Route

	// Middlewares returns the list of middlewares in use by the router.
	Middlewares() Middlewares

	// Match searches the routing tree for a handler that matches
	// the method/path - similar to routing a http request, but without
	// executing the handler thereafter.
	Match(rctx *Context, method, path string) bool

Each routing method accepts a URL pattern and chain of handlers. The URL pattern
supports named params (ie. /users/{userID}) and wildcards (ie. /admin/*). URL parameters
can be fetched at runtime by calling chi.URLParam(r, "userID") for named parameters
and chi.URLParam(r, "*") for a wildcard parameter.

Middleware handlers

chi's middlewares are just stdlib net/http middleware handlers. There is nothing special
about them, which means the router and all the tooling is designed to be compatible and
friendly with any middleware in the community. This offers much better extensibility and reuse
of packages and is at the heart of chi's purpose.

Here is an example of a standard net/http middleware handler using the new request context
available in Go 1.7+. This middleware sets a hypothetical user identifier on the request
context and calls the next handler in the chain.

// HTTP middleware setting a value on the request context
func MyMiddleware(next http.Handler) http.Handler {
  return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
    ctx := context.WithValue(r.Context(), "user", "123")
    next.ServeHTTP(w, r.WithContext(ctx))

Request handlers

chi uses standard net/http request handlers. This little snippet is an example of a http.Handler
func that reads a user identifier from the request context - hypothetically, identifying
the user sending an authenticated request, validated+set by a previous middleware handler.

// HTTP handler accessing data from the request context.
func MyRequestHandler(w http.ResponseWriter, r *http.Request) {
  user := r.Context().Value("user").(string)
  w.Write([]byte(fmt.Sprintf("hi %s", user)))

URL parameters

chi's router parses and stores URL parameters right onto the request context. Here is
an example of how to access URL params in your net/http handlers. And of course, middlewares
are able to access the same information.

// HTTP handler accessing the url routing parameters.
func MyRequestHandler(w http.ResponseWriter, r *http.Request) {
  userID := chi.URLParam(r, "userID") // from a route like /users/{userID}

  ctx := r.Context()
  key := ctx.Value("key").(string)

  w.Write([]byte(fmt.Sprintf("hi %v, %v", userID, key)))


chi comes equipped with an optional middleware package, providing a suite of standard
net/http middlewares. Please note, any middleware in the ecosystem that is also compatible
with net/http can be used with chi's mux.

Core middlewares

chi/middleware Handler description
AllowContentType Explicit whitelist of accepted request Content-Types
Compress Gzip compression for clients that accept compressed responses
GetHead Automatically route undefined HEAD requests to GET handlers
Heartbeat Monitoring endpoint to check the servers pulse
Logger Logs the start and end of each request with the elapsed processing time
NoCache Sets response headers to prevent clients from caching
Profiler Easily attach net/http/pprof to your routers
RealIP Sets a http.Request's RemoteAddr to either X-Forwarded-For or X-Real-IP
Recoverer Gracefully absorb panics and prints the stack trace
RequestID Injects a request ID into the context of each request
RedirectSlashes Redirect slashes on routing paths
SetHeader Short-hand middleware to set a response header key/value
StripSlashes Strip slashes on routing paths
Throttle Puts a ceiling on the number of concurrent requests
Timeout Signals to the request context when the timeout deadline is reached
URLFormat Parse extension from url and put it on request context
WithValue Short-hand middleware to set a key/value on the request context

Auxiliary middlewares & packages

Please see for additional packages.

package description
cors Cross-origin resource sharing (CORS)
jwtauth JWT authentication
hostrouter Domain/host based request routing
httpcoala HTTP request coalescer
chi-authz Request ACL via
phi Port chi to fasthttp

please submit a PR if you'd like to include a link to a chi-compatible middleware


context is a tiny pkg that provides simple interface to signal context across call stacks
and goroutines. It was originally written by Sameer Ajmani
and is available in stdlib since go1.7.

Learn more at



The benchmark suite:

Results as of Aug 31, 2017 on Go 1.9.0

BenchmarkChi_Param        	 3000000	       607 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_Param5       	 2000000	       935 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_Param20      	 1000000	      1944 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_ParamWrite   	 2000000	       664 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_GithubStatic 	 2000000	       627 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_GithubParam  	 2000000	       847 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_GithubAll    	   10000	    175556 ns/op	   87700 B/op	     609 allocs/op
BenchmarkChi_GPlusStatic  	 3000000	       566 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_GPlusParam   	 2000000	       652 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_GPlus2Params 	 2000000	       767 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_GPlusAll     	  200000	      9794 ns/op	    5616 B/op	      39 allocs/op
BenchmarkChi_ParseStatic  	 3000000	       590 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_ParseParam   	 2000000	       656 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_Parse2Params 	 2000000	       715 ns/op	     432 B/op	       3 allocs/op
BenchmarkChi_ParseAll     	  100000	     18045 ns/op	   11232 B/op	      78 allocs/op
BenchmarkChi_StaticAll    	   10000	    108871 ns/op	   67827 B/op	     471 allocs/op

Comparison with other routers:

NOTE: the allocs in the benchmark above are from the calls to http.Request's
WithContext(context.Context) method that clones the http.Request, sets the Context()
on the duplicated (alloc'd) request and returns it the new request object. This is just
how setting context on a request in Go 1.7+ works.